Солнечная батареи своими руками в домашних условиях

Содержание

Что такое солнечная батарея, и как она работает?

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображенийФото из Сборка представленной в примере батареи проводилась из 36 пластинок размером 80х150 мм. Производительность каждой пластинки по 2,1 Вт, общая мощность прибора 76 ВтС лицевой стороны сооружаемой солнечной батареи располагаются плюсовые токоведущие жилы, формируемые путем пайкиС тыльной стороны посредством пайки формируются минусовые токоведущие линии на шести контактахПластины соединяются согласно последовательной схеме. На выходе плюсовой линии устанавливается диод шоттки, исключающий разрядку аккумулятора в пасмурные погодные периодыСборка солнечной батареи из кремниевых пластинокФормирование плюсовой токоведущей дорожкиСоздание минусовых токоведущих линий с задней стороныПодключение проводника и блокирующего диода

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.

Принцип работы
Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД

Общие понятия о принципе получения электричества от солнечной энергии

У людей, решивших собрать солнечную батарею, возникает немало вопросов, а для многих эта задача видится и вовсе не выполнимой из-за кажущейся сложности ее конструкции. Однако, на самом деле особых трудностей в ее сборке нет. И в этом можно убедиться, изучив схему и рассмотрев, как выполняет работу мастер, изготовивший не один подобный прибор.

Солнечная батарея представляет собой совокупность фотоэлектрических преобразователей солнечной энергии в электрическую.

Солнечная батарея – это множество правильно соединенных между собой фотоэлементов. Каждый из них обладает невысокими генерирующими способностями, но в совокупности получаются весьма приличные показатели выработанной мощности.

Отдельные фотоэлементы соединены в единую панель и защищены с двух сторон материалами, стойкими к ультрафиолету, влаге и другим атмосферным явлениям. Это важно, так как батареи чаще всего эксплуатируются на открытом незащищенном пространстве — это может быть крыша здания, балконное ограждение или же поляна около дома.

Общая конструкция системы получения электрической энергии от солнечной представляет собой целый ряд приборов и устройств, соединенных в единую цепь:

Примерная схема системы выработки потребительской электрической энергии от солнечной

  • Пластины-преобразователи — это полупроводниковые фотоэлементы, обладающие способностью генерировать постоянный ток под воздействием света. Пластины соединяются между собой по определенной схеме специальными шинами (плоскими проводниками), и собираются в батарею в общем корпусе.
  • Панели-батареи, собранные из фотоэлементов, подключаются к прибору-контролеру с подобранными параметрами тока и напряжения, необходимыми для зарядки аккумулятора.
  • Аккумулятор или целая батарея таких аккумуляторов накапливает заряд.
  • Специальный инвертор преобразует постоянный ток в переменный с напряжением в 220 В (если этот необходимо).

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.Инженер.

Задать вопрос эксперту

Такая череда приборов используются в схеме в том случае, когда планируется отдельные постоянные точки потребления или даже полностью весь дом запитать от солнечной энергии. Накопленная в аккумуляторе за день энергия может быть использована в пасмурные дни или в темное время суток. Применяются и более простые схемы, когда солнечные батареи выступают лишь вспомогательным источником питания, и накопление энергии не требуется. Панель в таком случае может быть непосредственно подключена к прибору-потребителю. Однако, этот вариант менее надежен, так как стабильность питания будет полностью зависеть от наличия солнца в данный момент.

Использование солнечных батарей для полного снабжения дома энергией актуально в регионах, где количество солнечных дней в  течение года преобладает. Этим обычно «славятся» южные регионы страны. В других условиях они чаще всего применяются в качестве дополнительных источников электроснабжения.

Три основных разновидности фотоэлектрических модулей

Модули солнечных батарей, из которых собирается панель, подразделяются на три типа:

монокристаллический;

— поликристаллический;

— аморфный (тонкопленочный).

От особенностей структурного строения пластин напрямую зависит эффективность конструкции, а также ее общая стоимость.

Монокристаллический и поликристаллический вариант солнечной батареи

Монокристаллические пластины изготавливаются из монокристаллов кремния, выращенных по методу Чохральского. Они отличаются высоким качеством и обладают неплохим (по меркам фотоэлементов) КПД, равным примерно 20÷22%. Из-за этого и стоимость их достаточно высока.

Солнечные лучи, попадая на монокристаллическую поверхность, способствуют возникновению направленного движения свободных электронов. Пластины с двух сторон подсоединены к шинам, которые затем подключаются к общей электрической цепи системы.

Высокий КПД этого типа пластин объясняется тем, что солнечные лучи равномерно рассеиваются по поверхности кристалла.

Поликристаллические фотоэлементы изготавливаются из полупроводника, имеющего поликристаллическую структуру. Именно этот тип батареи считается оптимальным для создания системы преобразования солнечной энергии. Стоимость элементов, а как следствие — и целых батарей получается ниже по сравнению с монокристаллическими приборами. Это обуславливается особенностями производства фотоэлементов, так как при их изготовлении применяются фрагменты, оставшиеся от монокристаллов.

Если сравнивать два этих типа изделий, то можно выделить следующие различия, выявленные тестированием независимых компаний:

  • Поликристаллические пластины отличаются по внешнему виду от монокристаллов, так как имеют неоднородный по цвету окрас поверхностей, с перемежением темных и светлых участков.

Внешнее отличие пластин монокристаллов от поликристаллов заключается в однородности цвета.

  • В процессе эксплуатации у всех фотоэлементов происходит постепенное снижение мощности. Так, после года работы у монокристаллов она снижается на 3%, а у поликристаллических элементов — на 2%.
  • Суммарное количество электроэнергии, выработанное монокристаллическим модулем, примерно на 30% выше, чем у поликристаллических элементов, при их одинаковой площади.
  • Стоимость поликристаллов на 10÷15 % ниже монокристаллических батарей.

Аморфные солнечные модули

Этот тип элементов представляет собой плотную гибкую пленку, значительно упрощающую процесс монтажа батарей.

На современном рынке представлены три поколения подобных фотоэлементов:

Гибкие пленочные фотоэлементы на основе аморфного кремния имеют ряд преимуществ и значительно удобнее в работе

  • Элементы первого поколения являются однопереходными. Они имеют низкий КПД — всего 5% и относительно небольшой срок эксплуатации — не более 10 лет.
  • Пленка второго поколения тоже однопереходного типа, но уровень КПД у нее повышен до 8%, увеличен и срок эксплуатации.
  • Тонкопленочные батареи третьего поколения обладают КПД до 12%, и обладают длительным сроком службы, составляя конкуренцию кристаллическим вариантам.

Несмотря на не выдающиеся характеристики, самыми популярными остаются однопереходные тонкопленочные модули второго поколения. Они доступны по цене и обладают приличной мощностью, которая вполне может конкурировать с кристаллическими вариантами батарей.

Сравнение солнечных фотоэлементов

Если сравнивать кристаллические и пленочные батареи, то у последних существует ряд существенных преимуществ, благодаря которым часто предпочтение отдается именно им:

  • Аморфные пленочные элементы лучше реагируют на изменение температуры, в частности, на ее повышение. В солнечные месяцы года этот тип батарей способен произвести большее количество энергии по сравнению с кристаллическими аналогами — те при нагреве способны потерять до 20% мощности.
  • Пленочные батареи продолжают выработку энергии даже при рассеянном солнечном свете, в отличие от кристаллов, которые не генерируют энергию в пасмурную погоду. При слабом или рассеянном свете аморфная пленка способна вырабатывать до 20% энергии от своих номинальных показатели. Не слишком много, но лучше, чем ничего.
  • Стоимость кристаллических панелей гораздо выше, чем пленочных. Причем цена на последние продолжает снижаться из-за активного наращивания объемов их производства.
  • Пленочные солнечные батареи имеют меньшее количество дефектов и уязвимых мест. Дело в том, что жёсткие пластины при формировании панели спаиваются между собой, а пленка устанавливается в корпус конструкции в целом виде.

Если подвести итоги и вывести их в таблицу, то сравнительные характеристики пленочных аморфных и жестких кристаллических солнечных фотоэлементов будут выглядеть следующим образом:

ПараметрыКристаллические панелиАморфные тонкопленочные батареи
КПД изделий 9÷20% 6÷12%
Выходное напряжение одного фотоэлемента Около 0,5 В Около 1,7 В
Световой спектр максимальной чувствительности Ближе к красному цвету, то есть для эффективной работы необходимо яркое солнце. Ближе к ультрафиолету, то есть восприимчивы и к рассеянному освещению.
Гибкость Хрупкие и ломкие, требуют обязательной жесткой основы и надежной защиты от механического воздействия. Гибкие, легко гнутся, не заламываются.
Надежность при эксплуатации в экстремальных условиях Требуют жесткой основы и надежной защиты от механического воздействия. Более устойчивы к механическим воздействиям, хотя тоже требуют защиты.
Долговечность При должной защите, эксплуатируются длительное время, но с годами постепенно снижается эффективность работы изделий. Качественные изделия, выполненные с соблюдением технологии, выгорают на солнце на 4% за первые 4÷5 лет эксплуатации. Дешевые китайские аналоги могут подвести через 2÷3 года.
Вес Тяжелые. Легкие.

Необходимо уточнить, что производятся и комбинированные варианты солнечных батарей, то есть состоящие из кристаллических и аморфных элементов. То есть используются по максимуму все преимущества обоих типов. Однако, стоимость подобных изделий весьма высока, поэтому они не настолько популярны, как упомянутые выше батареи.

С чего начать?

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.
Солнечная батареи своими руками в домашних условиях

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Целесообразность самодельной солнечной панели

Понимание этих физических свойств кремния поможет в том, чтобы была собрана солнечная панель своими руками. Для начала работ необходимо подготовиться.

В любом случае запасной источник электроэнергии всегда востребован. Да еще и себестоимость солнечного киловатта существенно ниже традиционного электричества. Конечно, многие хотят приобрести и установить заводские солнечные панели. Отпугивает цена на весь комплект оборудования для домашней электростанции. Поэтому очень актуален вопрос — как собрать солнечную батарею самому?

Солнечная батарея

Более грамотный подход — рассчитать количество вырабатываемой энергии одним модулем:

W = k*Pw*E/1000

Где:

  • Е — количество солнечной инсоляции за известный период времени;
  • k — коэффициент, формирующий летом — 0,5, в зимний период — 0,7;
  • Pw — мощность одного устройства.

Исходя из планируемой полной мощности энергопотребления и расчётных данных, высчитывается общая мощность потребления электроэнергии.

Теперь если итог разделить на предполагаемую производительность одного фотоэлемента в финале получим необходимое количество модулей.

Этапы преобразования энергии

Необходимый инструмент и материалы

Если не пугает объем и сложность предстоящей работы, необходимо основательно подготовиться.

Основной элемент — сами пластины. Количество элементов подбирается исходя из выходных параметров будущей панели. Но основное условие — их технические характеристики должны быть идентичны друг другу. И если нет опыта в сборке подобных конструкции, лучше будет взять несколько элементов про запас, с учетом брака на первых этапах работы.

Комплектация для сборки

Продолжаем комплектовать материалы:

  • ДСП;
  • металлический профиль и уголок (лучше из алюминия);
  • поролон высотой 1,6–2,7 см;
  • основание под пластины из прозрачного материала;
  • набор из саморезов и шурупчиков;
  • несколько туб силиконового герметика;
  • электропроводка;
  • клемные зажимы.

Объем сырья мы не указываем т.к. оно находится в прямой зависимости от габаритов и количества деталей, из которых будет собрана самодельная солнечная батарея.

Теперь инструмент и вспомогательные материалы:

  • шуруповёрт;
  • ножовка по металлу и ножовка по дереву;
  • 40 Ватный электрический паяльник;
  • электрический тестер;
  • флюс и припой для пайки;
  • технический спирт, для обработки поверхностей под пайку;
  • ватные диски–тампоны.

Какие панели покупать

Все изделия такого класса делятся на:

  1. Монокристаллические (более дорогие).
  2. Поликристаллические (аморфные).

1–ые обладают более однородной структурой из–за чего КПД намного больше, чем у аморфных. Собственно именно это и обуславливает рост цены.

Виды панелей

Отличить эти фотоэлементы друг от друга очень просто, как по цвету (монокристалл тёмно–синий), так и по форме.

Что выбрать — решать покупателю, но следует знать, что более дешевые аморфные ячейки делаются на мелких китайских предприятиях с отклонениями в качестве материалов, но с более низкой себестоимостью.

Чтобы рассчитать количество фотоэлементов нужно ориентироваться на проектируемые выходные данные самодельных панелей.

По паспортным данным с одного квадратного метра панелей снимается 0,12 кВт/час электроэнергии. Для бытовых нужд достаточно получать с устройства 280–320 кВт в месяц.

Все элементы должны быть одного размера и номинала.

Если приобретается фотоэлемент с защитным восковым покрытием, то его после покупки надо удалить.

Закупочный комплект панелей

Последовательность действий по подготовке фотоэлементов:

  1. Панели распаковать.
  2. Обработать горячей (90±5 градусов Цельсия) водой.
  3. После того как воск растаял, все элементы разъединить друг от друга.
  4. Очистить каждую панель от остатков воска горячей водой.
  5. Разложить обработанные панели на мягкой ткани и просушить.

Панели после обработки

Солнечная батарея своими руками из подручных средств и материалов в домашних условиях

Несмотря на то, что мы живём в современном и быстроразвивающимся мире – покупка и монтаж солнечных батарей остаётся уделом обеспеченных людей. Стоимость одной панели, которая будет вырабатывать всего лишь 100 Ватт варьируется от 6 до 8 тысяч рублей. Это не считая ещё то, что отдельно надо будет покупать конденсаторы, аккумуляторы, контроллер заряда, сетевой инвертор, преобразователь и другие вещи. Но если у вас нет большого количества средств, а хочется перейти на экологически чистый источник энергии то у нас для вас есть хорошие новости – солнечную батарею можно собрать в домашних условиях. И если следовать всем рекомендациям, КПД у неё будет не хуже, чем у собранного в промышленных масштабах варианта. В данной части мы рассмотрим пошаговую сборку. Также уделим внимание материалам, из которых можно собрать солнечные панели.

Из диодов

Это один из самых бюджетных материалов. Если вы собрались делать солнечную батарею для дома из диодов, то помните, что с помощью данных компонентов собираются лишь небольшие солнечные батареи, способные запитать какие-либо незначительные гаджеты. Лучше всего подойдут диоды Д223Б. Это диоды советского образца, которые хороши тем, что имеют стеклянный корпус, из-за размера обладают высокой плотностью монтажа и имеют приятную цену.

После покупки диодов очистите их от краски – для этого достаточно поместить их в ацетон на пару часов. По прошествии данного времени она легко с них снимется.

Затем подготовим поверхность для будущего размещения диодов. Это может быть деревянная дощечка или любая другая поверхность. В ней требуется проделать отверстия на протяжении всей её площади Между отверстиями надо будет соблюдать расстояние от 2 до 4 мм.

После берём наши диоды и вставляем алюминиевыми хвостиками в данные отверстия. После этого хвостики требуется загнуть в отношении друг к другу и спаять для того, чтобы при получении солнечной энергии они распределяли электричество в одну “систему”.

Самодельная солнечная батарея из диодов

Наша примитивная солнечная батарея из стеклянных диодов готова. На выходе она может давать энергию в пару вольт, что является неплохим показателем для кустарной сборки.

Из транзисторов

Этот вариант уже будет более серьёзный, чем диодный, но всё равно является образцом суровой ручной сборки.

Для того, чтобы сделать солнечную батарею из транзисторов вам понадобятся для начала сами транзисторы. Благо их можно купить практически на любом рынке или в магазинах электронной техники.

После покупки вам потребуется срезать крышку у транзистора. Под крышкой прячется самый главный и нужный нам элемент – полупроводниковый кристалл.

Далее подготавливаем каркас нашей солнечной батареи. Можно использовать как дерево так и пластик. Пластик, конечно, будет лучше. В нём сверлим отверстия для выводов транзисторов.

Затем вставляем их в каркас и спаиваем их между друг другом соблюдая нормы “ввода-вывода”.

Солнечная батарея своими руками из транзисторов

На выходе такая батарея может давать мощность, которой хватит на осуществление работы, к примеру, калькулятора или маленькой диодной лампочки. Опять же такая солнечная батарея собирается чисто ради забавы и не представляет собой серьёзный “электропитательный” элемент.

Из алюминиевых банок

Данный вариант уже является более серьёзным в отличие от первых двух. Это тоже невероятно дешёвый и эффективный способ получить энергию. Единственное, на выходе её будет гораздо больше, чем в вариантах из диодов и транзисторов и она будет не электрическая, а тепловая. Всё что вам надо – большое количество алюминиевых банок и корпус. Хорошо подходит корпус из дерева. В корпусе лицевая часть должна быть закрыта оргстеклом. Без него батарея не будет эффективно работать.

Перед началом сборки надо покрасить алюминиевые банки чёрной краской. Это позволит им хорошо притягивать солнечный свет.

Затем с помощью инструментов на дне каждой банки пробиваются три отверстия. Наверху в свою очередь делается звездообразный вырез. Свободные концы загибаются наружу, что необходимо для того, чтобы происходила улучшенная турбулентность нагретого воздуха.

После данных манипуляций банки складываются в продольные линии (трубы) в корпус нашей батареи.

Затем между трубами и стенками/задней стенкой прокладывается слой изоляции (минеральная вата). Затем коллектор закрывается прозрачным сотовым поликарбонатом.

Самодельная солнечная батарея из алюминиевых банок

На этом процесс сборки завершён. Последним шагом является установка воздушного вентилятора в качестве двигателя для энергоносителя. Такая батарея хоть и не вырабатывает электричество, зато может эффективно прогреть жилое помещение. Конечно, это будет не полноценный радиатор, но прогрев небольшого помещения такой батарее под силу — например, для дачи отличный вариант. Про полноценные биметаллические радиаторы отопления мы говорили в статье — биметаллические радиаторы отопления какие лучше и прочнее, в которой мы рассматривали подробно строение подобных батарей отопления, их технические характеристики и сравнивали производителей. Советую ознакомиться.

Пошаговая инструкция как сделать солнечную батарею своими руками

Сейчас в 5 шагах будет рассмотрена более подробная сборка.

Спаиваем контакты фотоэлементов

Первым делом что нужно сделать это спаять проводники. Если можете приобретите кремневые пластины сразу с этой важной частью. Это существенно сэкономить вам время. Паять достаточно нудно и проблематично. В процессе можно нанести вред пластинам.

Алгоритм пайки:

  • Приготовьте перед собой пластину-фотоэлемент и проводник для припаивания.
  • Режим проводники при помощи картонного шаблона. Длина должна быть в 2-а раза больше солнечной пластинки.
  • Кладем проводник на фотоэлемент. Потребуется два проводника на 1-и элемент.
  • Стоит нанести кислоту на то место где собираетесь паять.
  • Выполнить паяние и прикрепить проводник к кремневой поверхности.

Желательно использовать припой, который выполнен в виде трубочки. Внутри которой залита канифоль.

Не стоит сильно давить на пластину из кремния, так как она очень хрупкая и может сломаться.

Создание каркаса

Он нужен для крепления всех фотоэлементов и его можно сделать из подручных средств. Потребуется алюминиевые уголки или рейки. Из них делается прямоугольная рамка. Размер уголка 70-90 мм.

Нанесите слой герметика на внутреннюю часть углов. Выполняйте эту процедуру качественно. От нее зависит долговечность конструкции.

Теперь перейдите к созданию заднего корпуса. Он выполняется в виде небольшого ящика с маленькими краями. Бока не должны быть по высоте больше 2 см. Рейки крепятся на саморезы. После этого проделайте отверстия для вентиляции. Друг от друга их разместите на уровне 10 см. После этого установите в рамку из алюминия прозрачную панель. Она может быть сделана из оргстекла или плексигласа.

Прозрачную панель плотно фиксируем и прикрепляем. Она фиксируется с помощью метизов. 4 штуки крепив по углам и 2 с длинной стороны и 1 с короткой. Метизы привинчиваем шурупами.

Когда каркас создан остается установить в него фотоэлементы. Перед этой процедурой очистите оргстекло от пыли и обезжирьте его спиртом. В место спирта можно использовать любую спиртсодержащую продукцию.

Внедрение кремниевых фотоэлементов

Это самое сложное что может быть когда делаешь солнечную батарею своими руками.

Берем оргстекло и синими пластинами в низ кладем на него наши фотоэлементы. Чтобы сделать все ровно используйте специальную подложку для нанесения разметки. Друг от друга пластины должны быть расположены на расстоянии около 3 мм.

Алгоритм действий

  • Паять фотоэлементы нужно придерживаясь определенной схемы. Положительный контакт расположен на левой стороне пластинки. Отрицательный находится на правой. Припой и флюс нужно наносить очень бережно.
  • При этой работе соблюдайте последовательность сверху в низ. Каждый ряд нужно будет соединить между собой.
  • Теперь надо приклеить фотоэлементы. Для этого нанесите прозрачный герметик в центр пластин.
  • Переверните цепочки модулей синей стороной вверх. Разместите их по разметке. Аккуратно прижмите пластины для надежной фиксации.
  • Подсоединяем контакты крайних элементов к шине. Плюс к «+», а минус к «-». В качестве шины применяйте более широкий проводник, выполненный из серебра.
  • Солнечную батарею нужно оснастить блокирующим диодом. Он нужен для того, чтобы предотвратить разрядку аккумулятора ночью.
  • На дне делаем отверстия для проводов. Чтобы они не болтались крепим их с помощью силиконового герметика.

Проверка солнечной батареи перед герметизацией

Как только спаяли ряд элементов выполните его тест. Так проще понять где слабый контакт. В качестве тестера потребуется самый простой амперметр. Можно взять мультиметр. Проверку стоит выполнять в солнечный день в 13-14 часов дня.

После того как найдете нужный угол начните выполнять измерения. Для этого подсоедините щупы амперметра к контактам батареи «+» и «-». Проверяем ток короткого замыкания. Сила тока должна быть ниже на 0,5-1 А чем сила короткого замыкания. Прибор должен показывать значение более 4,5 А. Это говорит о том, что солнечная батарея, сделанная своими руками работоспособна!

Батарея, выполненная самостоятельно из элементов группы «В» дает 5-10 А. Это ниже на 15% чем у заводских панелей.

Делаем солнечные батареи герметичными

Внимание! Данный процесс выполняйте только после того как убедитесь, что солнечная батарея полностью функционирует. В качестве заливки используем эпоксидный компаунд. Если для вас это дорого, тогда можно взять силиконовый герметик.

Выделяют 2-а способа герметизации:

  • Полная.
  • Частичная. Герметик наносят на крайние элементы и между пластинками.

Первый вариант более надежен. С верху ставится оргстекло и прижимается к пластинам, на которых нанесен силикон. В качестве дополнительной защиты можно установить прокладку из поролона. Ее ставят между задней поверхностью кремниевых пластин и каркасом.

Когда оргстекло будет установлено, нужно поставить на него груз. Это требуется для выдавливания пузырьков.

Когда все основные работы закончены следует повторно протестировать солнечную батарею. А затем внедрить в эксплуатацию и получать 220 вольт. Но придется прикупить регулятор напряжения, инвертор, аккумулятор и другие дополнительные элементы.

Некоторые люди собирают солнечную батарею из китайских панелей и вполне неплохо. Только сначала их придется заказать на алиэкспресс или другом подобном магазине.

В итоге у вас будет простейшая солнечная батарея.

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation – PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

Виды аккумуляторов, используемых в батареях

Аккумулятор для солнечных батарей

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.

AGM батарея

Недостатки солнечных батарей

Теперь, когда панели своими руками стали еще доступнее, не все владельцы жилья стремятся обзавестись таким альтернативным источником электроэнергии. И для этого есть свои причины:

Поле с установленными пластинами

  • мощная и эффективная система требует большой площади, которая будет полностью открыта для прямого попадания солнечных лучей;
  • чтобы перекрыть все потребности в получаемой солнечной энергии нужно, чтобы гелиосистема была оснащена достаточно большим количеством панелей. Отсюда вытекает другая проблема — для размещения большого количества фотоэлементов нужны и большие площади, открытые для прямого солнечного излучения;
  • для нормального функционирования системы необходимо подобрать аккумуляторы, которые будут соответствовать мощностям гелиосистемы;

Подбор аккумулятора

  • так как система совершенно малоэффективна в сумеречное время и абсолютно не работает ночью — необходимо дополнить ее аккумуляторами. Они накапливают энергию днем и отдают вечером или ночью;
  • так как аккумулятор будет, скорее всего, не один, а несколько, для них нужно отдельное помещение, которое к тому же должно отвечать всем нормам безопасности;
  • пока система новая, она будет работать с максимальной отдачей. Но погодные факторы — пыль, снег, дождь неизбежно будут снижать эффективность системы. Значит, все элементы нуждаются в периодической очистке, а для этого к ним должен быть удобный доступ;
  • на сегодня самые эффективные системы, которые собраны из пленочных фотоэлементов из тонких полимеров на основе теллурида кадмия. Но применение таких дорогостоящих компонентов в самодельных домашних системах абсолютно не рентабельно.

Панель на основе теллурида кадмия

Утилизация системы

Солнечные системы, собранные на производстве, рассчитаны на 45–летний срок использования. Их составляющие — контроллер и инвертор служат около 20 лет. Срок жизни аккумуляторов также весьма ограничен, но точно не превышает десяти лет.

Поэтому возникает закономерный вопрос — что делать с отработавшими свой ресурс элементами гелиосистемы?

Ответ очевиден — продать!

Можно не сомневаться, что и в вашем городе найдётся компания готовая выкупить эти компоненты.

Они вполне пригодны для повторного применения, чтобы создавать аналогичные системы. Цена природного кремния весьма высока, как и его переработка. Выгоднее выкупить отслужившие свой срок элементы, переработать их и пустить в повторное производство. Это намного прибыльнее, чем покупать сырье или самому добывать редкоземельные материалы.

Солнечная батарея своими руками на фото

В данном разделе представлены фотографии некоторых интересных, но в тоже время простых вариантов самодельных солнечных батарей, которые легко можно собрать своими руками.

Солнечная батарея своими руками на фото

Самодельная солнечная батарея на фото

Фото на крыше самодельной солнечной батареи

Солнечные батареи на самодельном каркасе

Солнечная батарея из множества фотоэлементов

Простая самодельная солнечная батарея

Транзисторная солнечная батарея

Фотоэлементы встроенные в окна

Что лучше – купить или сделать солнечную батарею?

Давайте в этой части подытожим всё, что мы узнали в этой статье. Во-первых, мы разобрались с тем, как собрать солнечную батарею в домашних условиях. Как можно видеть, солнечная батарея своими руками при соблюдении инструкций собирается весьма быстро. Если вы будете пошагово следовать различным мануалам, то вы сможете собрать отличные варианты для обеспечения вас экологически чистой электроэнергией (ну или варианты, рассчитанные на запитку мелких элементов).

Но всё же, что лучше – купить или сделать солнечную батарею? Естественно, лучше её купить. Дело в том, что те варианты, которые изготавливаются в промышленных масштабах предназначены для того, чтобы работать так, как им следует работать. При ручной сборке солнечных панелей нередко можно допустить различные ошибки, которые приведут к тому, что они просто не будут работать должным образом. Естественно, промышленные варианты стоят больших денег, но зато вы получаете качество и долговечность.

Но если вы уверены в своих силах, то при правильном подходе вы соберёте солнечную панель, которая будет не хуже промышленных аналогов. В любом случае, будущее уже рядом и скоро солнечные панели смогут позволить себе все слои. А там, может быть, произойдёт полный переход к использованию солнечной энергии. Удачи!

Если статья оказалась Вам полезна, поделитесь ею с друзьями нажав на кнопочки:
Ниже оставляйте свои комментарии, пожелания, задавайте вопросы, высказывайте свое мнение — нам это очень важно!

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторы для гелиопанелей
Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Заключение

Самоделки, типа домашней солнечной батареи это нешуточная задача, которая потребует помимо финансовых и временных затрат, еще и минимальных знаний по основам электротехники. Но если есть желание и усидчивость можно вполне быть уверенным в успехе поставленного перед собой вопроса.

В любом случае применение солнечного излучения сулит огромные перспективы. Статистика нам говорит о том, что на 1 м2 земной поверхности попадает 4,2 кВт/час солнечной энергии в день! А это эквивалентно экономии почти одного барреля сырой нефти в год. Так что можно с уверенностью сказать — будущее за альтернативной энергетикой.

Источники

  • https://sovet-ingenera.com/eco-energy/sun/solnechnaya-batareya-svoimi-rukami.html
  • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/solnechnaya-batareya-svoimi-rukami.html
  • https://habr.com/ru/post/460457/
  • https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/solnechnaya-batareya-svoimi-rukami.html
  • https://prosamostroi.ru/solnechnaya-batareya-svoimi-rukami/
  • https://batareykaa.ru/kak-sdelat-solnechnuyu-batareyu-svoimi-rukami/
  • https://LampaExpert.ru/alternativnye-istochniki/chto-takoe-solnechnye-batarei
  • https://sovet-ingenera.com/eco-energy/sun/princip-raboty-solnechnoj-batarei.html

[свернуть]
Adblock
detector